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Abstract
We give the solution to the problem of normal ordering of monomials (a+a)n in
pairs of deformed annihilation and creation operators of the Heisenberg algebra
involving the reflection operator.

PACS numbers: 02.10.Ox, 05.30.Jp

The normally ordered expansion of an integral power of the number operator a+a in terms of
the boson operators a and a+ that satisfy the Heisenberg commutation relation aa+ = a+a + 1
can be written in the form [1]

(a+a)n =
n∑

k=1

Sn,k(a
+)kak, (1)

where the Sn,k are the Stirling numbers of the second type

Sn,k = 1

k!

k∑
r=1

(−1)k−r

(
k

r

)
rn.

The generalization of the formulae with some applications can be found in many recent papers
[2, 3].

In the literature there exist many deformations of different types (Aric–Coon oscillator
[4], Macfarlane–Biedenharn oscillator [5, 6], etc).

The analogue of formula (1) for such algebras was carried out in the paper [7] by using a
set of deformed Stirling numbers.

A very interesting deformed Heisenberg algebra involving the reflection operator K

aa+ = a+a + 1 + νK, Ka = −aK, Ka+ = −a+K, K2 = 1, (2)

where ν is a real parameter, has found many interesting physical applications. This algebra
appeared naturally in the context of parafields [8, 9], but earlier it was known in connection
with some quantum mechanical systems [10]. Recently, this algebra has been used for the
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investigation of the quantum mechanical N-body Calogero model [11], for the bosonization
of supersymmetric quantum mechanics [12–14] and for describing anyons in (2+1) [14, 15]
and (1+1) dimensions [16].

The main goal of this paper is to solve the boson normal ordering problem for this algebra.
The result is formulated in the following theorem.

Theorem. Let A be associative algebra generated by elements a, a+ and K which fulfil (2),
where ν is a real parameter ν �= ±1,±2, . . . . Let us define rν = r + 1−(−1)r

2 ν and

[0]ν! = 1, [k + 1]ν! = (k + 1)ν · [k]ν!. (3)

Then, for all n = 1, 2, . . . , the relations

(a+a)n =
n∑

k=1

An,k(a
+)kak +

n∑
k=1

Bn,k(a
+)kakK, (4)

where

An,k = 1

2

k∑
r=1

(−1)k−r

(
(rν)

n

[r]ν! · [k − r]−ν!
+

(r−ν)
n

[r]−ν! · [k − r]ν!

)

Bn,k = (−1)k

2

k∑
r=1

(
(rν)

n

[r]ν! · [k − r]−ν!
− (r−ν)

n

[r]−ν! · [k − r]ν!

)
,

(5)

hold.

Proof. Formula (4) will be proved by induction. For n = 1, the formula is evident from
definition. To prove these relations by general n, we use the relation

a(a+)n = (a+)na + n(a+)n−1 +
1 − (−1)n

2
ν(a+)n−1K, (6)

which can easily be verified by induction. If we apply formula (6) to

(a+a)n+1 = a+a(a+a)n = a+a

(
n∑

k=1

An,k(a
+)kak +

n∑
k=1

Bn,k(a
+)kakK

)

=
n+1∑
k=1

An+1,k(a
+)kak +

n+1∑
k=1

Bn+1,k(a
+)kakK,

we obtain for An,k and Bn,k the relations

An+1,1 = An,1 − νBn,1

Bn+1,1 = Bn,1 − νAn,1
(7)

An+1,k = kAn,k − 1 − (−1)k

2
νBn,k + An,k−1

Bn+1,k = kBn,k − 1 − (−1)k

2
νAn,k + Bn,k−1

(8)

for k = 2, 3, . . . , n and

An+1,n+1 = An,n = 1, Bn+1,n+1 = Bn,n = 0. (9)

For k = 1, equation (5) reads
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An,1 = (1 + ν)n−1

2
+

(1 − ν)n−1

2
, Bn,1 = − (1 + ν)n−1

2
+

(1 − ν)n−1

2
,

and it is easy to verify by direct calculation that equations (7) hold for all n = 1, 2, . . . .
The proof of formulae (8) is straightforward by using the relation

(−1)k−rk +
1 − (−1)k

2
ν − (−1)k−r (k − r)−ν = (−1)k−r rν,

which holds true for any natural r, 1 � r � k.
To prove (9), we denote

An = 2An,n =
n∑

r=1

(−1)n−r

(
(rν)

n

[r]ν! · [n − r]−ν!
+

(r−ν)
n

[r]−ν! · [n − r]ν!

)

Bn = 2(−1)nBn,n =
n∑

r=1

(
(rν)

n

[r]ν! · [n − r]−ν!
− (r−ν)

n

[r]−ν! · [n − r]ν!

)
.

It is easy to show that A1 = 2 and B1 = 0. Next we continue by induction. Let Ak = 2
and Bk = 0 for any k = 1, 2, . . . , n. Then, since the relation

1

[r − 1]ν! · [n − r + 1]−ν!
+

1

[r]ν! · [n − r]−ν!
= (n + 1)(−1)r+1ν

[r]ν! · [n − r + 1]−ν!
(10)

is fulfilled, the following relations hold:

An+1 − 2 = An+1 − An =
n+1∑
r=1

(−1)n−r+1

(
(rν)

n+1

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n+1

[r]−ν! · [n − r + 1]ν!

)

−
n∑

r=1

(−1)n−r

(
(rν)

n

[r]ν! · [n − r]−ν!
+

(r−ν)
n

[r]−ν! · [n − r]ν!

)

= ((n + 1)ν)
n+1

[n + 1]ν!
+

((n + 1)−ν)
n+1

[n + 1]−ν!
+

n∑
r=1

(−1)n−r+1

×
(

(rν)
n · (n + 1)(−1)r+1ν

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n · ((n + 1)(−1)r ν)

[r]−ν! · [n − r + 1]ν!

)

Bn+1 = Bn+1 + Bn =
n+1∑
r=1

(
(rν)

n+1

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n+1

[r]−ν! · [n − r + 1]ν!

)

+
n∑

r=1

(
(rν)

n

[r]ν! · [n − r]−ν!
− (r−ν)

n

[r]−ν! · [n − r]ν!

)
= ((n + 1)ν)

n+1

[n + 1]ν!

− ((n + 1)−ν)
n+1

[n + 1]−ν!
+

n∑
r=1

(
(rν)

n · (n + 1)(−1)r+1ν

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n · ((n + 1)(−1)r ν)

[r]−ν! · [n − r + 1]ν!

)

The term (n + 1)(−1)r+1ν is equal to

(n + 1)(−1)r+1ν =



n + 1 for n odd
n + 1 + ν for n even, r odd
n + 1 − ν for n even, r even.

(11)

Therefore, we can write for odd n
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An+1 − 2 = (n + 1)

n+1∑
r=1

(−1)n−r+1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n

[r]−ν! · [n − r + 1]ν!

)

Bn+1 = (n + 1)

n+1∑
r=1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n

[r]−ν! · [n − r + 1]ν!

)

and for even n, after rearranging, we obtain

An+1 − 2 = (n + 1)

n+1∑
r=1

(−1)n−r+1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n

[r]−ν! · [n − r + 1]ν!

)

+ ν

n+1∑
r=1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n

[r]−ν! · [n − r + 1]ν!

)

Bn+1 = (n + 1)

n+1∑
r=1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n

[r]−ν! · [n − r + 1]ν!

)

+ ν

n+1∑
r=1

(−1)n−r+1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n

[r]−ν! · [n − r + 1]ν!

)
.

Consequently, to prove the relations An+1 − 2 = Bn = 0, it is sufficient to prove that these
expressions are equal to zero.

It follows from the assumption of induction that if we exchange n+1 with n these relations
vanish. Due to ν �= ±1,±2, . . . , these equations are equivalent to

n∑
r=1

(−1)n−r

(
(rν)

n−1

[r]ν! · [n − r]−ν!
+

(r−ν)
n−1

[r]−ν! · [n − r]ν!

)
= 0

n∑
r=1

(
(rν)

n−1

[r]ν! · [n − r]−ν!
− (r−ν)

n−1

[r]−ν! · [n − r]ν!

)
= 0.

Therefore, the relations An+1 − 2 = Bn+1 = 0 are equivalent to

n+1∑
r=1

(−1)n−r+1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n

[r]−ν! · [n − r + 1]ν!

)

−
n∑

r=1

(−1)n−r

(
(rν)

n−1

[r]ν! · [n − r]−ν!
+

(r−ν)
n−1

[r]−ν! · [n − r]ν!

)
= 0

n+1∑
r=1

(
(rν)

n

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n

[r]−ν! · [n − r + 1]ν!

)

+
n∑

r=1

(
(rν)

n−1

[r]ν! · [n − r]−ν!
− (r−ν)

n−1

[r]−ν! · [n − r]ν!

)
= 0.

Similarly, we prove that the conditions An+1 − 2 = Bn+1 = 0 are equivalent to

n+1∑
r=1

(−1)n−r+1

(
(rν)

n−1

[r]ν! · [n − r + 1]−ν!
+

(r−ν)
n−1

[r]−ν! · [n − r + 1]ν!

)
= 0

n+1∑
r=1

(
(rν)

n−1

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n−1

[r]−ν! · [n − r + 1]ν!

)
= 0.



Normal ordering for the deformed Heisenberg algebra involving the reflection operator 2309

In this way, we can decrease the power of rν and r−ν in the sums and to prove that the
relations An+1 − 2 = Bn+1 = 0 are equivalent to the conditions

n+1∑
r=1

(−1)n−r+1

(
rν

[r]ν! · [n − r + 1]−ν!
+

r−ν

[r]−ν! · [n − r + 1]ν!

)

=
n∑

r=0

(−1)n−r

(
1

[r]ν! · [n − r]−ν!
+

1

[r]−ν! · [n − r]ν!

)
= 0 (12)

n+1∑
r=1

(
(rν)

n−1

[r]ν! · [n − r + 1]−ν!
− (r−ν)

n−1

[r]−ν! · [n − r + 1]ν!

)

=
n∑

r=0

(
1

[r]ν! · [n − r]−ν!
− 1

[r]−ν! · [n − r]ν!

)
= 0. (13)

To prove (13), we put in the second term of the sum n − r → r . In the same way, we can
prove (12) for n odd. If n in (12) is even, we use (10). In this case, nν = n. Therefore, we can
write

n∑
r=0

(−1)n−r

[r]ν! · [n − r]−ν!
= 1

[n]−ν!
+

1

[n]ν!
+

n−1∑
r=1

(−1)n−r

[r]ν! · [n − r]−ν!

= 1

[n]−ν!
+

1

[n]ν!
+

1

n

n−1∑
r=1

(
(−1)n−r

[r − 1]ν! · [n − r]−ν!
+

(−1)n−r

[r]ν! · [n − r − 1]−ν!

)

= 1

[n]−ν!
+

1

[n]ν!
− 1

n

n−2∑
r=0

(−1)n−r

[r]ν! · [n − r − 1]−ν!

+
1

n

n−1∑
r=1

(−1)n−r

[r]ν! · [n − r − 1]−ν!
= 0,

where we use [n]ν = n · [n − 1]ν!, which holds for n even. �

In this paper, the problem of normal ordering of monomials (a+a)n in pairs of deformed
annihilation and creation operators of the Heisenberg algebra involving the reflection operator
is solved. The calculation of more general formulae for ordering of monomials ((a+)sar)n is
in progress and will soon be finished.

It is a well-known fact that in the case of the standard Heisenberg algebra the corresponding
results are related with Hermitian polynomials. The referee has suggested extending the results
of this paper to more general polynomials. We have begun the study of this problem. It is one
of many possible applications of the results of this paper.
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